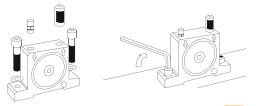

Pneumatic Vibrator

3 Technologies: Ball, Roller, Turbine

FACILITATES THE FLOW OF DIFFICULT MATERIALS


- Multidirectional vibrations
- No lubrication
 No maintenance
- Explosion proof

These vibrators generate **multi-directional vibrations.** They are used for emptying silos, intermediate hoppers, activating vibrating trays and tables, sifters and generally speaking to **unclog**, **convey**, **densify** and **separate bulk materials** and **reduce friction**.

They are suitable for explosive or humid environments and may also be used outdoor. The frequency and centrifugal force is determined by the working pressure. All our vibrators (ball, roller, or turbine) comply with Machine Directive 2006/42/CE. For activation, a 2/2 solenoid valve and filtered air are required.

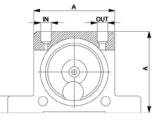
Easy mounting, air requisitions:

 clean air, without impurities that may damage the solenoid valves used in the pneumatic vibrator.
 dehumidified: a condensation water separator should be used.
 lubricated

Ball Technology

APPLICATIONS

Material separation, conveying and compacting, unclogging in silos/hoppers/sifters, filters cleaning, to facilitate the flow and eliminate blocking issues.


The small size of the pneumatic vibrators allows them to be easily integrated into the manufacturing process.

TECHNICAL SPECIFICATIONS

Ball vibrators are composed of an anodized aluminium frame in which a hardened steel ball turns on a wear-resistant hardened steel device. The vibrator produces small amplitude vibration whose frequency and vibration force can be adjusted with the help of the pressure (2 to 6 bar) and the air flow rate. Operating temperature: from 20 to 120°C

DIMENSIONS

Туре	Α	В	С	D	E	F	IN/OUT	Weight
	mm	mm	mm	mm	mm	mm	110/001	Kg
58	50	86	68	12	20	7	1/8"	
S10								0.13
S13	65	113	90	16	25	9	1/4"	0.26
S16					28			0.30
S20		128	104	16	33	9	1/4"	0.53
S25	80				38			0.63
530	100	160	130	20	45	11	3/8"	1.13
S36	100				50			1.34

PERFORMANCES*

	Vibrations			٨	Aaximum forc	e	Air consumption		
Туре	2 bar	4 bar	6 bar	2 bar	4 bar	6 bar	2 bar	4 bar	6 bar
	Vpm				Kg		Litre/min.		
58	25,500	31,000	35,000	13	26	36	83	145	195
S10	22,500	28,000	34,000	25	47	71	92	150	200
513	15,000	18,500	22,500	32	55	87	94	158	225
S16	13,000	17,400	19,500	45	80	110	122	200	280
S20	10,500	14,500	16,500	72	122	172	130	230	340
S25	9,200	12,200	14,000	93	157	205	160	290	425
530	7,800	9,700	12,500	151	247	321	215	375	570
536	7,300	9,000	10,000	206	315	405	260	475	675

*The data comes from a vibrating bench with springs, perfectly simulating most of the possible applications. The more the structure where the vibrators are applied to is rigid, the greater the frequency and centrifugal force are

