Pneumatic Vibrator 3 Technologies: Ball, Roller, Turbine

FACILITATES THE FLOW OF DIFFICULT MATERIALS

Advantages

- Multidirectional vibrations
- No lubrication
- No maintenance
- Explosion proof

These vibrators generate **multi-directional vibrations.** They are used for emptying silos, intermediate hoppers, activating vibrating trays and tables, sifters and generally speaking to **unclog**, **convey**, **densify** and **separate bulk materials** and **reduce friction**.

They are suitable for explosive or humid environments and may also be used outdoor. The frequency and centrifugal force is determined by the working pressure.

All our vibrators (ball, roller, or turbine) comply with Machine Directive 2006/42/CE.

For activation, a 2/2 solenoid valve and filtered air are required.

Easy mounting, air requisitions:

 clean air, without impurities that may damage the solenoid valves used in the pneumatic vibrator.

- . dehumidified: a condensation water separator should be used.
- . lubricated

Pneumatic Vibrator Roller Technology

APPLICATIONS

Pneumatic roller vibrators improve the flow rate of difficult materials into hoppers and other containers.

TECHNICAL SPECIFICATIONS

They are made up of an anodized aluminum body with a hardened steel roller on a cast iron run rolling inside. Vibration is generated by a roller making epicyclical movements inside a run manufactured from steel. These vibrators create a very high frequency with low air consumption regarding the force created. Operating temperature: from 0 to 200°C

DIMENSIONS

Туре	А	В	С	D	E	F		Weight
	mm	mm	mm	mm	mm	mm	IN/001	Kg
OR 50	50	86	68	12	30	7	1/8"	0.370
OR 65	65	113	90	16	36	9	1/4"	0.760
OR 80	80	128	104	16	40	9	1/4"	1.270
OR 100	100	160	130	20	52	11	1/4"- 3/8"	2.600

PERFORMANCES*

	Vibrations			Ν	Aaximum forc	e	Air consumption		
	2 bar	4 bar	6 bar	2 bar	4 bar	6 bar	2 bar	4 bar	6 bar
	Vpm				Kg		Litre/min.		
OR 50	21,000	25,000	29,500	188	281	355	78	144	204
OR 65	19, 000	22,000	26,000	235	439	552	100	198	296
OR 80	14,000	16,000	21,500	342	587	624	122	255	378
OR 100	6,750	9,750	11,000	289	604	783	132	284	412

"The data comes from a vibrating bench with springs, perfectly simulating most of the possible applications. The more the structure where the vibrators are applied to is rigid, the greater the frequency and centrifugal force are